Johnson Johnson DIABETES INSTITUTE, LLC

Management of Hyperglycemia in T2DM: A Patient-Centered Approach

Ramachandra G. Naik, MD

Senior Medical Director, Worldwide Clinical Affairs Johnson & Johnson Diabetes Care Companies, Wayne PA

Natural History of Type 2 Diabetes

Adapted from Ramlo-Halsted BA, Edelman SV. Prim Care. 1999;26:771-789

Pathophysiology of Type 2 Diabetes

DIABETES INSTITUTE, LLC

Polling Question

More than 50% of all non-insulin medications currently used to treat T2DM have been approved since 2000.

A. True B. False

Diabetes Drug Classes Increasing Rapidly

DIABETES INSTITUTE, LLC

Type 2 Diabetes Therapy: Sites of Action

DIABETES INSTITUTE, LLC

Patient-Centered Approach

"...providing care that is respectful of and responsive to individual patient preferences, needs, and values ensuring that patient values guide all clinical decisions."

- Gauge patient's preferred level of involvement.
- Explore, where possible, therapeutic choices. Consider using decision aids.
- <u>Shared Decision Making</u> a collaborative process between patient and clinician, using best available evidence and taking into account the patient's preferences and values
- Final decisions regarding lifestyle choices ultimately lie with the patient.

Impact of Intensive Therapy for Diabetes: Summary of Major Clinical Trials

ANTI-HYPERGLYCEMIC THERAPY

- Glycemic targets
 - HbA1c < 7.0% (mean PG ~150-160 mg/dl)
 - Pre-prandial PG <130 mg/dl
 - Post-prandial PG <180 mg/dl
 - Individualization is key:
 - Tighter targets (6.0 6.5%) younger, healthier
 - Looser targets (7.5 8.0%⁺) older, comorbidities, hypoglycemia prone, etc.
 - Avoidance of hypoglycemia

Figure 1. Modulation of the intensiveness of glucose lowering therapy in T2DM

Approach to the management of hyperglycemia

Figure 1. Modulation of the intensiveness of glucose lowering therapy in T2DM

Figure 1. Modulation of the intensiveness of glucose lowering therapy in T2DM

Figure 1. Modulation of the intensiveness of glucose lowering therapy in T2DM

Figure 1. Modulation of the intensiveness of glucose lowering therapy in T2DM

Figure 1. Modulation of the intensiveness of glucose lowering therapy in T2DM

Figure 1. Modulation of the intensiveness of glucose lowering therapy in T2DM

Figure 1. Modulation of the intensiveness of glucose lowering therapy in T2DM

American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for Developing a Diabetes Mellitus Comprehensive Care Plan

Writing Committee Cochairpersons Yehuda Handelsman MD, FACP, FACE, FNLA Zachary T. Bloomgarden, MD, MACE George Grunberger, MD, FACP, FACE Guillermo Umpierrez, MD, FACP, FACE Robert S. Zimmerman, MD, FACE

ENDOCRINE PRACTICE Vol 21 No. 4 April 2015

Copyright © 2015 AACE. May not be reprinted in any form without express written permission from AACE.

INDIVIDUALIZE GOALS

A1c ≤ 6.5%

For patients without concurrent serious illness and at low hypoglycemic risk

A1c > 6.5%

For patients with concurrent serious illness and at risk for hypoglycemia

Polling Question

Which of the following statement(s) about individualization of pharmacotherapy is consistent with 2015 ADA EASD Position statement update?

- A. Anti-hyperglycemic therapy includes increased activity levels
- B. Insulin used to treat T2DM includes both human insulin and insulin analogues
- C. Consider sex, racial, ethnic and genetic differences in management of T2DM
- **D.** All of the above

ANTI-HYPERGLYCEMIC THERAPY

- Therapeutic options: <u>Lifestyle</u>
 - Weight optimization

- Healthy diet

Noninsulin Agents Available for T2D

Class	Primary Mechanism of Action	Agent(s)	Available as		
α-Glucosidase inhibitors	• Delay carbohydrate absorption from intestine	Acarbose Miglitol	Precose or generic Glyset		
Amylin analogue	 Decrease glucagon secretion Slow gastric emptying Increase satiety 	Pramlintide	Symlin		
Biguanide	Decrease HGPIncrease glucose uptake in muscle	Metformin	Glucophage or generic		
Bile acid sequestrant	Decrease HGP?Increase incretin levels?	Colesevelam	WelChol		
DPP-4 inhibitors	 Increase glucose-dependent insulin secretion Decrease glucagon secretion 	Alogliptin Linagliptin Saxagliptin Sitagliptin	Nesina Tradjenta Onglyza Januvia		
Dopamine-2 agonist	• Activates dopaminergic receptors	Bromocriptine	Cycloset		
Glinides	• Increase insulin secretion	Nateglinide Repaglinide	Starlix or generic Prandin		

DPP-4 = dipeptidyl peptidase; HGP = hepatic glucose production.

Garber AJ, et al. Endocr Pract. 2013;19(suppl 2):1-48. Inzucchi SE, et al. Diabetes Care. 2012;35:1364-1379.

Copyright © 2015 AACE.

May not be reprinted in any form without express written permission from AACE.

Continued on next slide

Noninsulin Agents Available for T2D

Class	Primary Mechanism of Action	Agent(s)	Available as	
GLP-1 receptor agonists	 Increase glucose-dependent insulin secretion Decrease glucagon secretion Slow gastric emptying Increase satiety 	Albiglutide Dulaglutide Exenatide Exenatide XR Liraglutide	Tanzeum Trulicity Byetta Bydureon Victoza	
SGLT2 inhibitors	• Increase urinary excretion of glucose	Canagliflozin Dapagliflozin Empagliflozin	Invokana Farxiga Jardiance	
Sulfonylureas	• Increase insulin secretion	Glimepiride Glipizide Glyburide	Amaryl or generic Glucotrol or generic Diaβeta, Glynase, Micronase, or generic	
Thiazolidinediones	 Increase glucose uptake in muscle and fat Decrease HGP 	Pioglitazone Rosiglitazone	Actos Avandia	

GLP-1 = glucagon-like peptide; HGP = hepatic glucose production; SGLT2 = sodium glucose cotransporter 2.

Garber AJ, et al. Endocr Pract. 2013;19(suppl 2):1-48. Inzucchi SE, et al. Diabetes Care. 2012;35:1364-1379.

Copyright © 2015 AACE.

May not be reprinted in any form without express written permission from AACE.

ANTI-HYPERGLYCEMIC THERAPY

• Insulins

Human Insulins

- Neutral protamine Hagedorn (NPH)
- Regular human insulin
- Pre-mixed formulations

Insulin Analogues

- Basal analogues (glargine, detemir, degludec)
- Rapid analogues (lispro, aspart, glulisine)
- Pre-mixed formulations

Insulin Secretion

Insulin is secreted by the pancreas in a glucosedependent manner continuously throughout the day, as well as in response to oral carbohydrate loads

Insulin Mimics Normal Physiologic Profile

Principle of insulin use - to create as normal a glycemic profile as possible without causing unacceptable weight gain or hypoglycemia

Supplement to The Journal of the American Osteopathic Association April 2013;113(4): Supplement 2: S6–S16

Pharmacokinetic Profiles of Human Insulin and Insulin Analogs

PROFILES OF ANTIDIABETIC MEDICATIONS

	MET	GLP-1 RA	SGLT-2i	DPP-4i	AGi	TZD	SU GLN	COLSVL	BCR-QR	INSULIN	PRAML
НҮРО	Neutral	Neutral	Neutral	Neutral	Neutral	Neutral	Moderate/ Severe Mild	Neutral	Neutral	Moderate to Severe	Neutral
WEIGHT	Slight Loss	Loss	Loss	Neutral	Neutral	Gain	Gain	Neutral	Neutral	Gain	Loss
RENAL/ GU	Contra- indicated CKD Stage 3B,4,5	Exenatide Contra- indicated CrCl < 30	Genital Mycotic Infections	Dose Adjustment May be Necessary (Except Linagliptin)	Neutral	May Worsen Fluid Retention	More Hypo Risk	Neutral	Neutral	More Hypo Risk & Fluid Retention	Neutral
GI Sx	Moderate	Moderate	Neutral	Neutral	Moderate	Neutral	Neutral	Mild	Moderate	Neutral	Moderate
CHF	Neutral	Noutral	Neutral	Noutral	Noutral	Moderate	Neutral	Noutrol	Neutral	Noutral	Noutral
CVD	Benefit		Increased LDL	Neutrai	Neutral	Neutral	?	Neutrai	Safe	Neutral	Neutral
BONE	Neutral	Neutral	Neutral	Neutral	Neutral	Moderate Bone Loss	Neutral	Neutral	Neutral	Neutral	Neutral

Few adverse events or possible benefits

Use with caution

Likelihood of adverse effects

COPYRIGHT © 2015 AACE MAY NOT BE REPRODUCED IN ANY FORM WITHOUT EXPRESS WRITTEN PERMISSION FROM AACE.

	Basal Insulin	
	(usually with metformin +/- other non-insulin agent)	
,		Λ
	• Start: 10U/day or 0.1-0.2 U/kg/day	
	• Adjust: 10-15% or 2-4 U once-twice weekly to reach FBG target.	
	 For hypo: Determine & address cause; 	

Polling Question

American Association of Clinical Endocrinologists (AACE) Treatment Guidelines are based on the A1c at initial entry into treatment and at all follow-up visits.

A. True B. False

GLYCEMIC CONTROL ALGORITHM

PROGRESSION OF DISEASE

COPYRIGHT © 2015 AACE MAY NOT BE REPRODUCED IN ANY FORM WITHOUT EXPRESS WRITTEN PERMISSION FROM AACE.

OTHER CONSIDERATIONS

- Age
- Weight
- Sex / racial / ethnic / genetic differences
- Co-morbidities
 - Coronary artery disease
 - Heart Failure
 - Chronic kidney disease
 - Liver dysfunction
 - Hypoglycemia-prone

FUTURE DIRECTIONS / RESEARCH NEEDS

- Comparative effectiveness research
 Focus on important clinical outcomes
- Contributions of genomic research
- Perpetual need for clinical judgment!

KEY POINTS

- Glycemic targets & BG-lowering therapies must be <u>individualized</u>, based on a variety of patient and disease characteristics.
- <u>Diet, exercise, & education</u>: foundation of any T2DM therapy program
- Unless contraindicated, <u>metformin</u> remains the optimal first-line drug.
- After metformin, data are limited. <u>Combination therapy</u> with 1-2 other oral / injectable agents is reasonable. Try to minimize side effects.
- Ultimately, many patients will require <u>insulin</u> therapy alone or in combination with other agents to maintain BG control.
- All treatment decisions should be made in conjunction with the <u>patient</u> (focusing on his or her preferences, needs & values.)
- Comprehensive <u>CV risk reduction</u> a major focus of therapy

Diabetes Care 2012;35:1364–1379; *Diabetologia* 2012;55:1577–1596 *Diabetes Care* 2015;38:140-149; *Diabetologia* 2015;10.1077/s00125-014-3460-0

