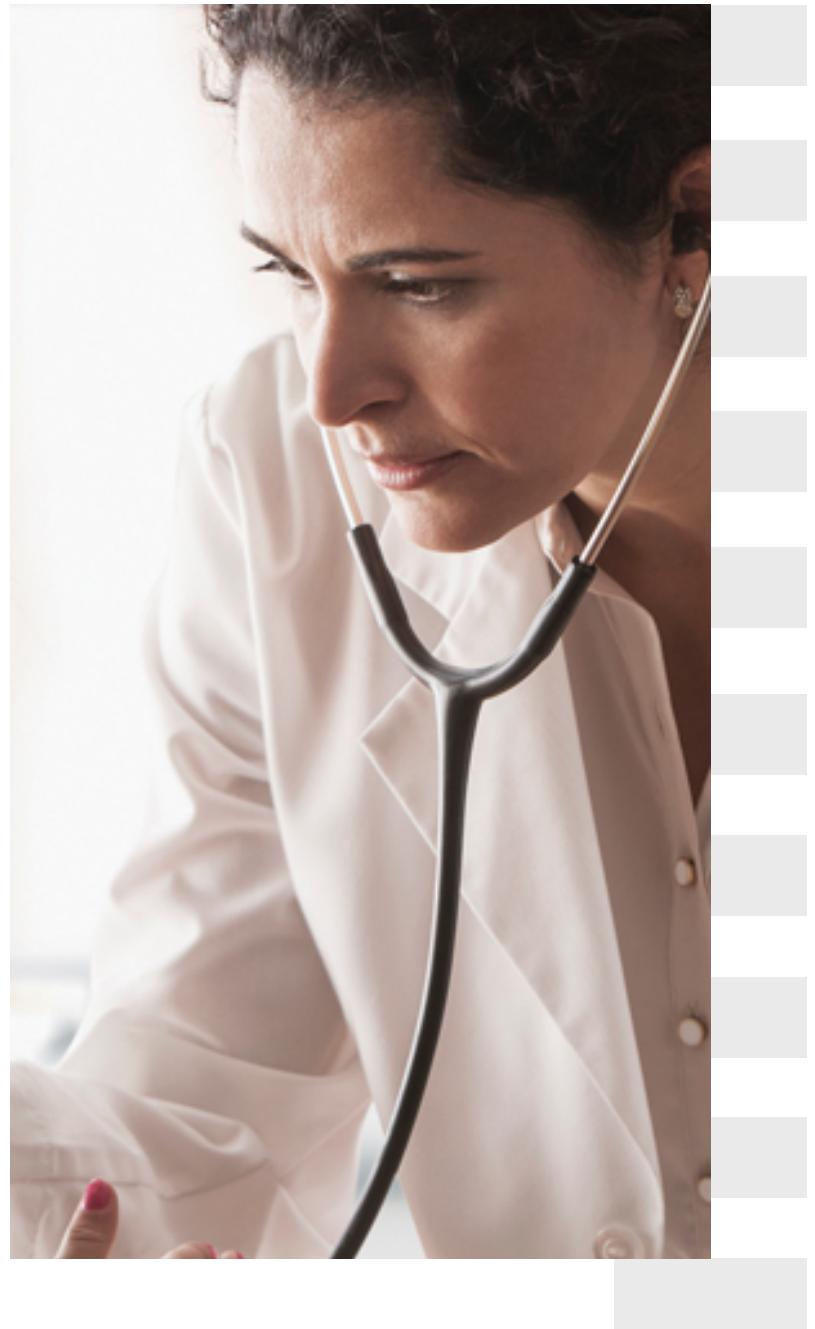


Transforming Diabetes Care


**Meeting the Challenge of
Inpatient Glycemic Management
in the Critical Care Setting**

**Jane Jeffrie Seley, DNP, MSN, MPH, GNP,
BC-ADM, CDE, CDTC, FAAN, FAADE**
Diabetes Nurse Practitioner, Inpatient Diabetes Team
Division of Endocrinology, Diabetes & Metabolism
New York-Presbyterian Hospital / Weill Cornell Medicine

Goals

- Review the current guidelines for the management of hyperglycemia in the critical care setting
- Discuss potential strategies to assist clinicians in meeting the current guidelines

Objectives

At the end of this program the participant will be able to:

- State current glycemic targets in the critical care setting
- Discuss several key components of a safe and effective insulin drip protocol
- List diagnostic criteria for diabetic ketoacidosis
- Describe when and how to transition patients from an insulin infusion to subcutaneous insulin therapy

Polling Question

According to the American Diabetes Association, the current glycemic target for a critically ill patient is

- A) 80-110 mg/dL
- B) 110-140 mg/dL
- C) 100-180 mg/dL
- D) 140-180 mg/dL

History of Glycemic Targets in the ICU

Up until 2001	<i>No recommendation</i> Average BG 200-240 mg/dL
2001-2008	ADA/AACE Recommendation: BG 80-110 mg/dL
2009-2017	ADA/AACE Recommendation: BG140-180 mg/dl <i>for most critically ill patients</i> , tighter goals <140mg/dL in <i>select pts without hypoglycemia</i>

Polling Question

In critically ill patients, intensive glycemic control can significantly increase the risk of severe hypoglycemia

A) True

B) False

Glycemic Control in the ICU: 1999-2004

Study	Setting	Population	Clinical Outcome
Furnary, 1999	ICU	DM undergoing open heart surgery	65% ↓ infection
Furnary, 2003	ICU	DM undergoing CABG	57% ↓ mortality
Krinsley, 2004	Medical/surgical ICU	Mixed, no Cardiac	29% ↓ mortality
Malmberg, 1995	CCU	Mixed	28% ↓ mortality After 1 year
Van den Berghe, 2001*	Surgical ICU	Mixed, with CABG	42% ↓ mortality
Lazar, 2004	OR and ICU	CABG and DM	60% ↓ A Fib post op survival 2 yr

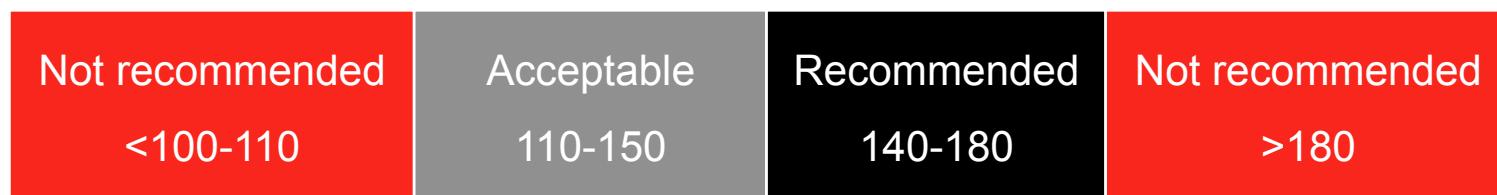
*Van den Berghe (2001) was only randomized clinical trial (RCT)

Kitabchi & Umpierrez. Metabolism. 2008;57:116-120.

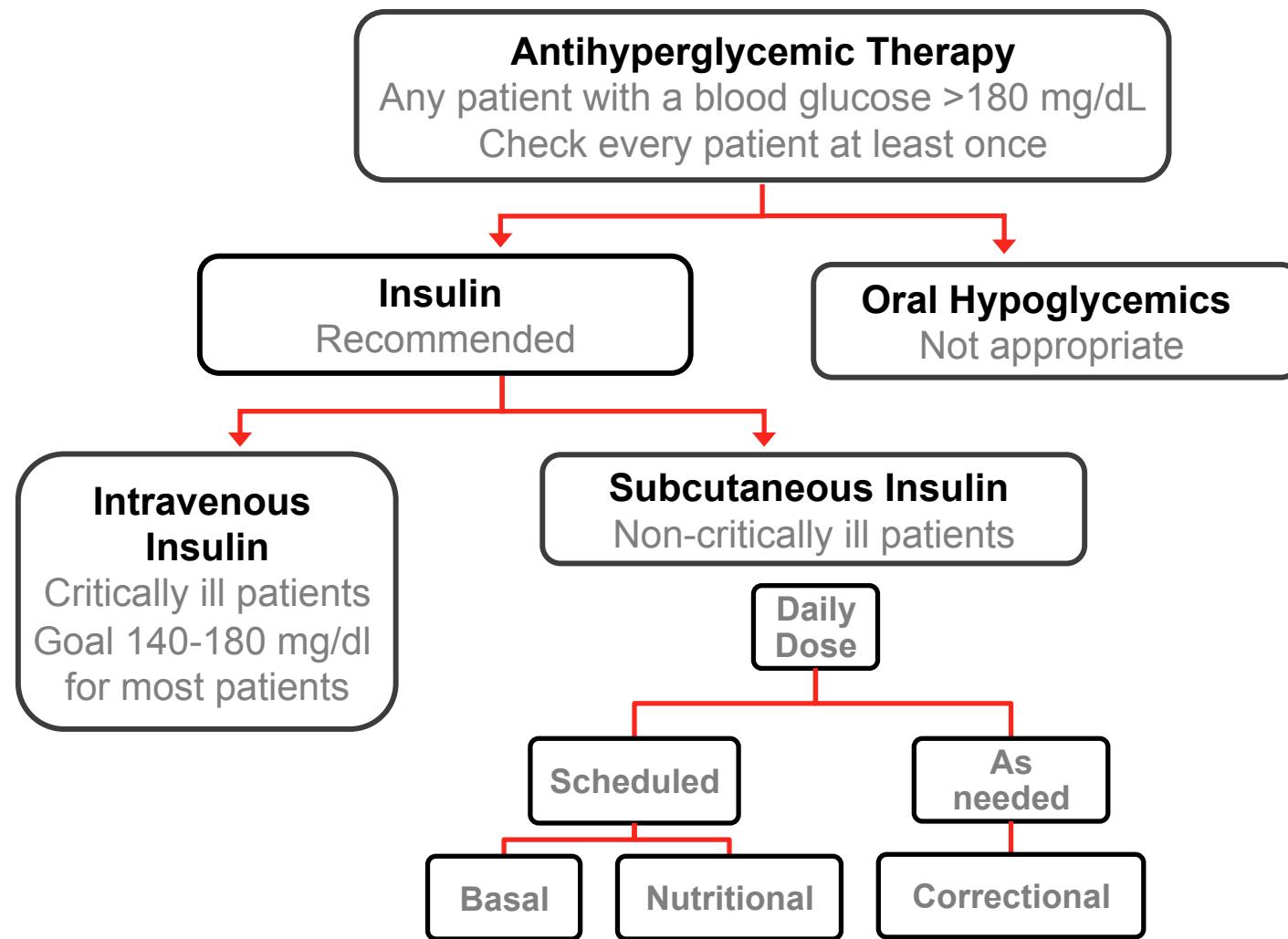
Glycemic Control in the ICU: 2006-2009

Trial	N	Setting	Primary Outcome	ARR	RRR	Odds Ratio (95% CI)	P-value
Van den Berghe 2006	1200	MICU	Hospital mortality	2.7%	7.0%	0.94* (0.84-1.06)	N.S.
Glucontrol 2007	1101	ICU	ICU mortality	-1.5%	-10%	1.10* (0.84-1.44)	N.S.
Ghandi 2007	399	OR	Composite	2%	4.3%	1.0* (0.8-1.2)	N.S.
VISEP 2008	537	ICU	28-d mortality	1.3%	5.0%	0.89* (0.58-1.38)	N.S.
De La Rosa 2008	504	SICU MICU	28-d mortality	-4.2% *	-13%*	NR	N.S.
NICE-SUGAR 2009	6104	ICU	3-mo mortality	-2.6%	-10.6	1.14 (1.02-1.28)	< 0.05

Recent studies in critical care were unable to replicate earlier studies and identified severe hypoglycemia as a significant risk of intensive glucose control. In Ghandi et al, intensive insulin therapy during cardiac surgery did not reduce perioperative death or morbidity. In the NICE-SUGAR study, critically ill patients treated in the intensive glucose control group (81-108 mg/dL) were 14% more likely to die (27.5% vs 24.9%) than those in the conventional glucose control group (144-180 mg/dL). Severe hypoglycemia (blood glucose \leq 40 mg/dL) occurred in 6.8% of the intensive-control group versus 0.5% of the conventional-control group ($P < .001$).


Glycemic Targets in Critical Care Setting

American Diabetes Association (2017)


- Starting blood glucose (BG) threshold of >180 mg/dL
- Once IV insulin started, BG level should be maintained between 140-180 mg/dL
- Lower BG targets (110-140 mg/dL) may be appropriate in selected patients
- Targets <110 mg/dL or >180 mg/dL are not recommended

Society of Critical Care Medicine (2012)

- Starting threshold of >150 mg/dL, absolutely at 180 mg/dL
- Use protocol to achieve low rate of hypoglycemia <70 mg/dL
- Minimal excursions of <100 mg/dL

Insulin Therapy in Inpatient Setting

ADA Recommendations (2017):

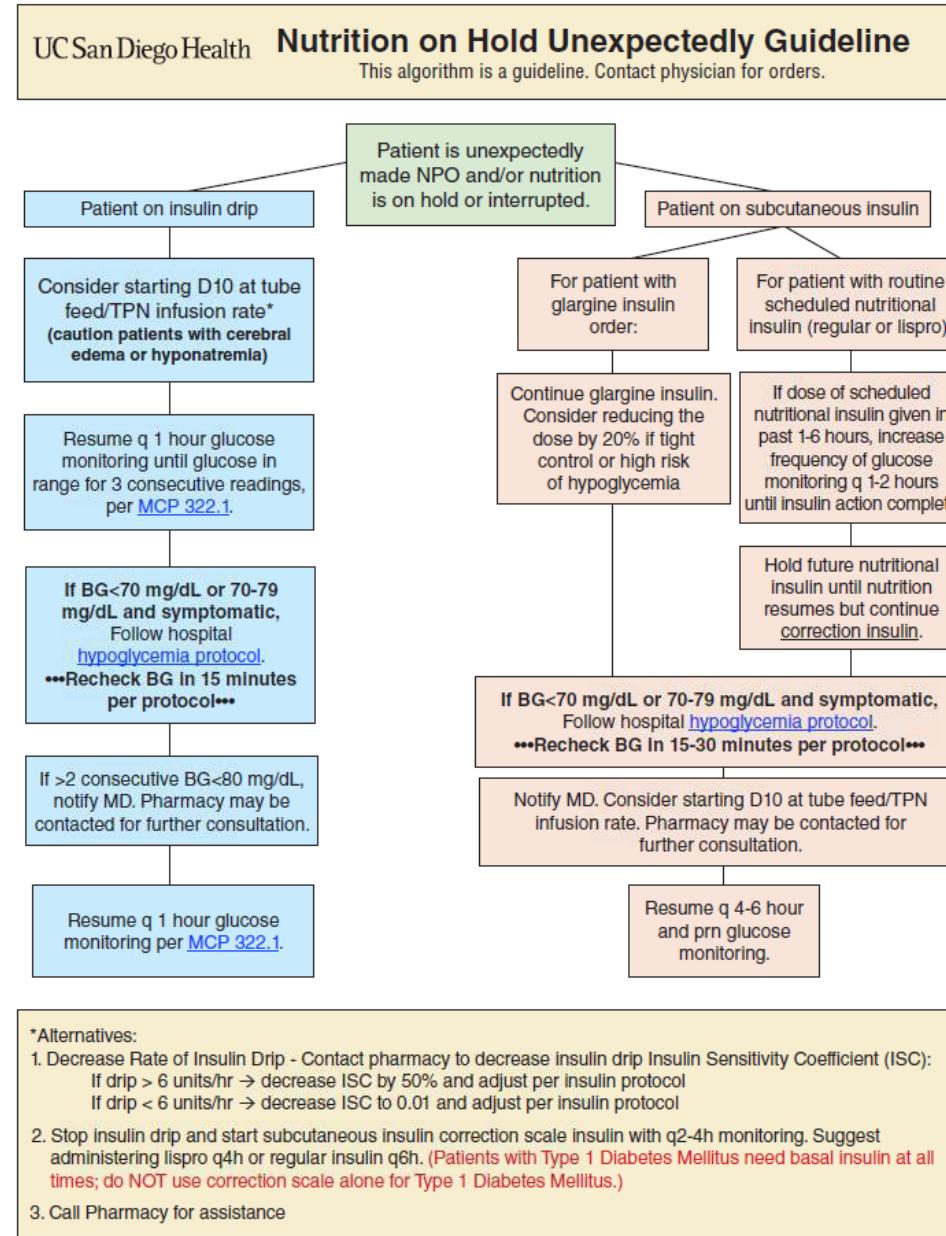
Intravenous Insulin Infusion Protocols

Intravenous insulin infusions should be administered:

- using validated written or computerized protocols
- that allow for predefined adjustments in the insulin infusion rate
- based on glycemic fluctuations and insulin dose

Ingredients for Insulin Infusion Order Sets and Protocols

Table 2. Components of a Safe and Effective Insulin Infusion Protocol


- Includes appropriate glycemic targets
- Identifies threshold for implementation
- Is nurse-managed and easy to implement
- Provides clear, specific directions for blood glucose monitoring and titration
- Includes titration based on both current blood glucose level and rate of change*
- Is safe: carries a low risk for hypoglycemia and includes an embedded protocol for treatment of hypoglycemia should it occur
- Is effective: gets patients to target quickly and maintains blood glucose within the target range with minimal titration
- Includes a plan for transition to subcutaneous insulin

**Rate of change is calculated based on the slope of the blood glucose trend line and is frequently incorporated into column-based protocols by movement to a more aggressive algorithm if blood glucose is not declining by ~ 40–75 mg/dl or to a less aggressive algorithm if blood glucose is declining too rapidly.*

UC San Diego Guideline:

When Nutrition is on
hold unexpectedly

Delineates Steps

WD1119 (3-16)

Yale Insulin Drip Protocol

The following insulin drip protocol is intended for use in hyperglycemic adult patients in an ICU setting, but is not specifically tailored for those individuals with diabetic emergencies, such as diabetic ketoacidosis (DKA) or hyperglycemic hyperosmolar states (HHS).

When these diagnoses are being considered, or if $BG \geq 500$ mg/dL, an MD should be consulted for specific orders. Also, please notify an MD if the response to the insulin drip is unusual/unexpected, or if any situation arises that is not adequately addressed by these guidelines.

Initiating An Insulin Drip

- 1) INSULIN INFUSION: Mix 1 U Regular Human Insulin per 1 cc 0.9 % NaCl. Administer via infusion pump (in increments of 0.5 U/hr).
- 2) PRIMING: Flush 50 cc of Insulin/NS drip through all IV tubing, before infusion begins (to saturate the insulin binding sites in the tubing)
- 3) TARGET BLOOD GLUCOSE (BG) LEVELS: 100-139 mg/dL
- 4) BOLUS & INITIAL INSULIN DRIP RATE: Divide initial BG level (mg/dL) by 100, then round to nearest 0.5 U for bolus AND initial drip rate
Examples: 1) Initial BG = 325 mg/dL: $325 \div 100 = 3.25$, rounded \uparrow to 3.5: IV bolus 3.5 U + start drip @ 3.5 U/hr.
2) Initial BG = 174 mg/dL: $174 \div 100 = 1.74$, rounded \downarrow to 1.5: IV bolus 1.5 U + start drip @ 1.5 U/hr.

Fingerstick (FS) Blood Glucose Monitoring

- 1) Check FS hourly until stable (= 3 consecutive values in target range)
- 2) Then check FS q 2 hours; once stable x 12-24 hours, FS checks can be spaced to q 4 hours if:
 - a) No significant change in clinical condition AND b) No significant change in nutritional intake
- 3) If ANY of the following occur, consider the temporary resumption of hourly FS monitoring, until BG is again stable (= 2-3 consecutive BG values in target range).
 - a) Any change in insulin drip rate (i.e. BG out of target range)
 - b) Significant changes in clinical condition
 - c) Initiation or cessation of pressor therapy
 - d) Initiation or cessation of renal replacement therapy (hemodialysis, CVVH, etc.)
 - e) Initiation, cessation, or rate change of nutritional support (TPN, PPN, tube feedings, etc.)

Changing the Insulin Drip Rate

If $BG < 50$ mg/dL:

D/C INSULIN DRIP

Give 1 Amp (25 g) D50 IV; recheck BG q 15 minutes

⇒ When $BG \geq 100$ mg/dL, wait 1 hour, then restart insulin drip at 50% of original rate

If $BG 50-74$ mg/dL:

D/C INSULIN DRIP

If symptomatic (or unable to assess), give 1 Amp (25 g) D50 IV; recheck BG q 15 minutes

If asymptomatic, give 1/2 Amp (12.5 g) D50 IV or 8 ounces Juice; recheck BG q 15-30 minutes

⇒ When $BG \geq 100$ mg/dL, wait 1 hour, then restart drip at 75% of original rate

Changing the Insulin Drip Rate (cont'd.)

Yale Insulin Drip Protocol (continued)

BG 75-99 mg/dL	BG 100-139 mg/dL	BG 140-199 mg/dL	BG \geq 200 mg/dL	INSTRUCTIONS*
		BG \uparrow by > 50 mg/dL/hr	BG \uparrow	\uparrow DRIP by “2 Δ ”
	BG \uparrow by > 25 mg/dL/hr	BG \uparrow by 1-50 mg/dL/hr OR BG UNCHANGED	BG UNCHANGED OR BG \downarrow by 1-25 mg/dL/hr	\uparrow DRIP by “ Δ ”
BG \uparrow	BG \uparrow by 1-25 mg/dL/hr, BG UNCHANGED, OR BG \downarrow by 1-25 mg/dL/hr	BG \downarrow by 1-50 mg/dL/hr	BG \downarrow by 26-75 mg/dL/hr	NO DRIP CHANGE
BG UNCHANGED OR BG \downarrow by 1-25 mg/dL/hr	BG \downarrow by 26-50 mg/dL/hr	BG \downarrow by 51-75 mg/dL/hr	BG \downarrow by 76-100 mg/dL/hr	\downarrow DRIP by “ Δ ”
BG \downarrow by > 25 mg/dL/hr see below**	BG \downarrow by > 50 mg/dL/hr	BG \downarrow by > 75 mg/dL/hr	BG \downarrow by > 100 mg/dL/hr	HOLD DRIP x 30 min, then \downarrow DRIP by “2 Δ ”

**D/C INSULIN DRIP; \sqrt{BG}
q 30 min; when $BG \geq 100$ mg/dL,
restart drip @75% of original rate.

***CHANGES IN DRIP RATE (“ Δ ”)** are determined by the current drip rate:

Current Drip Rate (U/hr)	Δ = Rate Change (U/hr)	2Δ = 2X Rate Change (U/hr)
< 3.0	0.5	1
3.0 - 6.0	1	2
6.5 - 9.5	1.5	3
10 - 14.5	2	4
15 - 19.5	3	6
20 - 24.5	4	8
≥ 25	≥ 5	10 (Consult MD)

Goal BG 100-140

Insulin Infusion: Adult ICU Protocol NOT for DKA/HYPERGLYCEMIC HYPEROSMOLAR NON-KETOTIC SYNDROME (HHS)

- For blood glucose (BG) above 140 mg/dL, start regular insulin infusion: 100 units/100 mL NS (1 unit = 1 mL) per table

INITIAL INFUSION	BG (mg/dL)	141-180	181-240	241-300	301-399	≥400
	Insulin Rate	1 unit/hour	2 units/hour	3 units/hour	4 units/hour	6 units/hour

- Check BG every 1 hour until stable (100-140 mg/dL x 2 consecutive readings), then check every 2 hours if insulin rate is <10 units/hour and there are no changes in feedings, IV glucose, vasopressors or glucocorticoids. Resume every 1 hour monitoring if any of above parameters change.
- Titrate insulin infusion to achieve a **goal BG of 100-140 mg/dL**. Select row according to current BG level. Determine rate of change from prior BG result. Match to column of current insulin rate. Follow recommendations to corresponding cell. Round to nearest 0.5 units/hour.
- If nutrition (e.g., tube feeding) is held or discontinued, notify prescriber to either hold insulin infusion or add/increase dextrose-containing IV order.
- Any deviation from protocol requires prescriber order. When the subsequent BG returns to goal, may resume following the protocol from the current insulin rate.

Current Insulin Rate (unit/hour)								
Current BG Level (mg/dL)	BG change from previous BG (mg/dL)	≤ 3	3.5-6	6.5-9.5	10-14.5	15-19.5	≥ 20	
< 40		STOP INSULIN INFUSION (EXCEPT for patients with Type 1 DM, see footnote ^a) Give 25 G (50 mL) D50 IVP Q 15 min, repeat PRN for BG < 40 mg/dL. Notify prescriber Re-check BG Q 15 minutes until BG > 80 mg/dL then Q 1 hour x 1, then Q 2 hours When BG > 100 mg/dL, restart at 50% previous rate unless BG change from previous BG is > 100 mg/dL, then restart per Initial Infusion Table						
40-69		As above (refer to row < 40 mg/dL), EXCEPT give 12.5 G (25 mL) D50 IVP Q 15 min PRN BG 40-69 mg/dL						
70-99		STOP INSULIN INFUSION (EXCEPT for patients with Type 1 DM, see footnote ^a) for 1 hour (continue glucose containing fluid) Check BG Q 1 h x 1, then Q 2 h. When BG > 100 mg/dL, restart at 50% previous rate unless BG change from previous BG is > 100 mg/dL, then restart per Initial Infusion Table						
100-140 (GOAL)	No Δ. Decreased by 1-20 or any Increase	★ Continue same rate (If 2 consecutive BG levels are between 100-140 mg/dL, continue at the same rate and decrease BG checks to Q 2 hours)						
	Decreased by ≥ 21	★ Decrease by 1	★ Decrease by 2	★ Decrease by 3	★ Decrease by 4	★ Decrease by 6	★ Decrease by 50%	
141-199	No Δ. Decreased by ≤ 20 or any Increase	Increase by 0.5	Increase by 1	Increase by 1.5	Increase by 2	Increase by 2.5	Increase by 3	
	Decreased by 21-50	★ Continue same rate						
	Decreased by ≥ 50	★ Decrease by 1	★ Decrease by 2	★ Decrease by 3	★ Decrease by 4	★ Decrease by 6	★ Decrease by 50%	
≥ 200	No Δ. Decreased by 1-20 or any Increase	Increase by 2	Increase by 2	Increase by 3	Increase by 4	Increase by 6	Increase by 8	
	Decreased by 21-75	Continue same rate Hold x 1 hour, then decrease rate as indicated:						
	Decreased by ≥ 76	Decrease by 1	Decrease by 2	Decrease by 3	Decrease by 4	Decrease by 6	Decrease by 50%	

Notify prescriber if BG > 400 mg/dL x 2 or insulin rate > 10 units/hour

If adjustment recommendations result in insulin rate of < 0 units/h, hold insulin (If Type 1 DM reduce insulin to 0.5 unit/h), check BG Q 2 hours and resume per Initial Infusion Table

^aFor patients with Type 1 DM: DO NOT STOP INSULIN (Continue glucose-containing fluid), reduce insulin to 0.5 unit/hour and notify prescriber to write orders to increase glucose intake. Δ = Change
Note (★): For patients when insulin resistance is suspected (e.g., insulin rates > 10 units/h, high catecholamine needs, typically postoperative), decrease insulin rate to 0.5 unit/h and notify prescriber

Goal BG 140-180

Insulin Infusion: Adult ICU Protocol

NOT for DKA/HYPERGLYCEMIC HYPEROSMOLAR NON-KETOTIC SYNDROME (HHS)

1. For blood glucose (BG) above 180 mg/dL, start regular insulin infusion: 100 units/100 mL NS (1 unit = 1 mL) per table

INITIAL INFUSION	BG (mg/dL)	180-216	217-270	271-324	>324
	Insulin Rate	1 unit/hour	2 units/hour	3 units/hour	4 units/hour

2. Check BG every 1 hour until stable (140-180 mg/dL x 2 consecutive readings), then check every 2 hours if insulin rate is <10 units/hour and there are no changes in feedings, IV glucose, vasopressors or glucocorticoids. Resume every 1 hour monitoring if any of above parameters change.
3. Titrate insulin infusion to achieve a **goal BG of 140-180 mg/dL**. Select row according to current BG level. Determine rate of change from prior BG result. Match to column of current insulin rate. Follow recommendations to corresponding cell. Round to nearest 0.5 units/hour.
4. If nutrition (e.g., tube feeding) is held or discontinued, notify prescriber to either hold insulin infusion or add/increase dextrose-containing IV order.
5. Any deviation from protocol requires prescriber order. When the subsequent BG returns to goal, may resume following the protocol from the current insulin rate.

		Current Insulin Rate (unit/hour)						
Current BG Level (mg/dL)	BG change from previous BG (mg/dL)	≤ 3	3.5-6	6.5-9.5	10-14.5	15-19.5	≥ 20	
< 40		STOP INSULIN INFUSION (EXCEPT for patients with Type 1 DM, see footnote ^a) Give 25 G (50 mL) D50 IVP Q 15 min, repeat PRN for BG < 40 mg/dL. Notify prescriber Re-check BG Q 15 minutes until BG > 80 mg/dL then Q 1 hour x 1, then Q 2 hours. When BG > 100 mg/dL, restart at 50% previous rate unless BG change from previous BG is > 100 mg/dL, then restart per Initial Infusion Table						
40-69		As above (refer to row < 40 mg/dL), EXCEPT give 12.5 G (25 mL) D50 IVP Q 15 min PRN BG 40-69 mg/dL						
70-99		STOP INSULIN INFUSION (EXCEPT for patients with Type 1 DM, see footnote ^a) for 1 hour Check BG Q 1 h x 1, then Q 2 h. When BG > 100 mg/dL, restart at 50% previous rate unless BG change from previous BG is > 180 mg/dL, then restart per Initial Infusion Table						
100-139		★ Decrease rate by 50%						
140-180 (GOAL)	No Δ, Decreased by 1-20 or any Increase	★ Continue same rate (If 2 consecutive BG levels are between 140-180 mg/dL, continue at the same rate and decrease BG checks to Q 2 hours)						
	Decreased by ≥ 21	★ Decrease by 1	★ Decrease by 2	★ Decrease by 3	★ Decrease by 4	★ Decrease by 6	★ Decrease by 50%	
181-251	Decreased by ≤ 20 or any Increase	Increase by 0.5	Increase by 1	Increase by 1.5	Increase by 2	Increase by 2.5	Increase by 3	
	Decreased by 21-50	★ Continue same rate						
	Decreased by ≥ 50	★ Decrease by 1	★ Decrease by 2	★ Decrease by 3	★ Decrease by 4	★ Decrease by 6	★ Decrease by 50%	
≥ 252	No Δ, Decreased by 1-20 or any Increase	Increase by 2	Increase by 2	Increase by 3	Increase by 4	Increase by 6	Increase by 8	
	Decreased by 21-75	Continue same rate						
	Decreased by ≥ 76	Hold x 1 hour, then decrease rate as indicated:						
		Decrease by 1	Decrease by 2	Decrease by 3	Decrease by 4	Decrease by 6	Decrease by 50%	

Notify prescriber if BG > 400 mg/dL x 2 or insulin rate > 10 units/hour

If adjustment recommendations result in insulin rate of ≤ 0 units/h, hold insulin (If Type 1 DM reduce insulin to 0.5 unit/h), check BG Q 2 hours and resume per Initial Infusion Table

^aFor patients with Type 1 DM: DO NOT STOP INSULIN (Continue glucose-containing fluid), reduce insulin to 0.5 unit/hour and notify prescriber to write orders to increase glucose intake. Δ = Change
Note (★): For patients when insulin resistance is suspected (e.g., insulin rates > 10 units/h, high catecholamine needs, typically postoperative), decrease insulin rate to 0.5 unit/h and notify prescriber

Polling Question

According to the American Diabetes Association guidelines, an intravenous insulin infusion protocol must be:

- A) Computerized
- B) Nurse managed
- C) Validated
- D) Reaching blood glucose target within 3-4 hours

NYPH Insulin Infusion:

Adult ICU Protocol Goal BG 100-140 mg/dL: General Instructions

- **NOT for DKA/
HYPERGLYCEMIC
HYPEROSMOLAR NON-
KETOTIC SYNDROME
(HHS)**
- **For blood glucose (BG)
above 140 mg/dL, start
regular insulin infusion: 100
units/100 mL NS (1 unit = 1
mL) per table**
- **Check BG every 1 hour
until stable (100-140 mg/dL
x 2 consecutive readings),
then check every 2 hours
if insulin rate is <10 units/
hour and there are *no
changes in feedings, IV
glucose, vasopressors or
very glucocorticoids***
- **Resume every 1 hour
monitoring if any of above
parameters change**

NYPH Insulin Infusion:

Adult ICU Protocol Goal BG 100-140 mg/dL: General Instructions

- Titrate insulin infusion to achieve a **goal BG of 100-140 mg/dL**.
- Select row according to current BG level and determine rate of change from prior BG result.
- Match to column of current insulin rate. Follow recommendations to corresponding cell. Round to nearest 0.5 units/hour.
- **If nutrition (e.g., tube feeding) is held or discontinued, notify prescriber** to either hold insulin infusion or add/increase dextrose-containing IV order.
- **Any deviation from protocol requires prescriber order.** When the subsequent BG returns to goal, may resume following the protocol from the current insulin rate.

NYPH Hypoglycemia Treatment

in Insulin Infusion Protocols

EXAMPLE of Hypoglycemia Treatment:
BG <40 mg/dL:

- STOP INSULIN INFUSION (EXCEPT for patients with Type 1 DM). Give 25 G (50 mL) D50 IVP Q 15 min, repeat PRN for BG <40 mg/dL. Notify prescriber Re-check BG Q 15 minutes until BG >80 mg/dL then Q 1 hour x 1, then Q 2 hours
- When BG >100 mg/dL, restart at 50% previous rate unless BG change from previous BG is > 100 mg/dL, then restart per Initial Infusion Table

NYPH Hypoglycemia Treatment

in Insulin Infusion Protocols

BG 40-69 mg/dL

- As above (refer to row <40 mg/dL), EXCEPT **give 12.5 G (25 mL) D50 IVP Q 15 min PRN BG 40 -69 mg/dL**

BG 70-99 mg/dL

- **STOP INSULIN INFUSION for 1 hour (continue glucose containing fluid)** Check BG Q 1 h x 1, then Q 2 h. When BG >100 mg/dL, restart at 50% previous rate unless BG change from previous BG is >100 mg/dL, then restart per Initial Infusion Table

- **For patients with Type 1 DM: DO NOT STOP INSULIN** (continue glucose-containing fluid), **reduce insulin to 0.5 unit/hour and notify prescriber to write orders to increase glucose intake.**

Transition From IV to Subcutaneous (SC) Insulin

<u>DKA</u>	<u>HHS</u>	<u>Hyperglycemia</u>
BG <200 mg/dL	BG <300 mg/dL	Resolution of critical illness
Two of the following: Gap <12 Bicarbonate >15 pH >7.3	Normal osmolality	Off vasopressors
	Normal mentation	Stable infusion rate for ~6hrs

Kitabchi Diabetes Care 2006

- If SC basal insulin is required, give 1-2 hrs before stopping IV insulin
- Calculate dose by stable infusion rate e.g. average stable hourly rate over the last 6hrs X 20 (80% of dose)
- OR weight based depending on patient's expected requirements (e.g. A1c, diabetes requiring insulin)

What is Diabetic Ketoacidosis (DKA)

- DKA: reduction in *relative effective action of circulating insulin* with rise in counter-regulatory hormones, e.g. catecholamines, cortisol, glucagon & growth hormone
- Alterations in hormones leads to increased gluconeogenesis, greater renal & hepatic glucose production and impairment in glucose utilization in the peripheral tissues
- Insulin deficiency and increased counter-regulatory hormones leads to release of ketone bodies (beta-hydroxybutyrate and acetoacetate) with resulting ketonemia and metabolic acidosis
- Control of glycosuria in DKA is key, if left unchecked it leads to osmotic diuresis with subsequent loss of water and electrolytes.

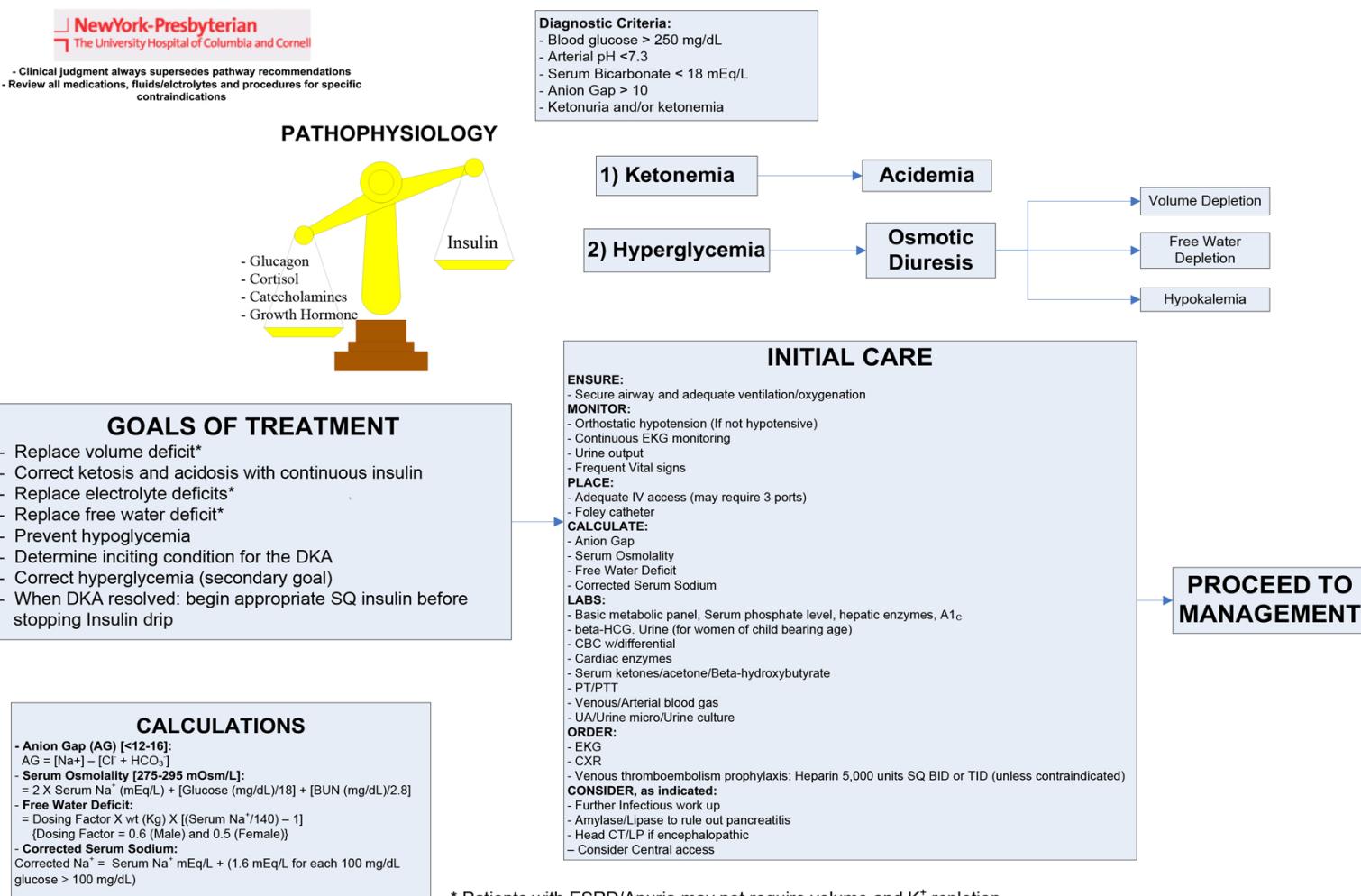
Diagnosing Diabetic Ketoacidosis (DKA)

- Over 100,000 patients admitted to U.S. hospitals each year
- Costs over \$1 billion/year
- Most have T1DM
- T2DM at risk during severe stress e.g. surgery, infection, or trauma
- New risk factor: euglycemic DKA when taking SGLT-2s

Diagnostic criteria for DKA:

- Plasma glucose >250 mg/dL
- Positive serum and/or urine ketones
- Elevated anion gap >10
- Serum HCO₃ < 15 mmol/L
- Arterial or venous pH <7.3

Polling Question


Treatment of diabetic ketoacidosis (DKA) centers around insulin therapy, replacing fluids and electrolytes and determining the cause.

A) True

B) False

Diabetic Ketoacidosis Guidelines

Definition: Metabolic anion-gap acidosis due to elevated serum ketones

Example of Insulin Dosing Recommendations

in Non Nurse-Driven DKA Protocol

Insulin Algorithm When Serum Glucose <250 mg/dL

- Add Dextrose (D51/2NS or D5NS*) to IVF @ 150-250 mL/h to maintain serum glucose 150-200 mg/dL and continue insulin at same rate
- Titrate insulin to a minimum 0.1 Units/kg/hr and glucose goal between 150-200 mg/dL until ketosis and anion gap resolves
- If patient can tolerate PO, encourage consistent carbohydrate diet

* Use D5NS if corrected $[Na^+]$ < 140 or remains volume depleted

Key Points About Insulin Infusions

- **Per guidelines, insulin infusions are indicated for:**
 - DKA/HHS
 - Critically ill patients with a BG >180 mg/dL
- Treatment of DKA centers around the four pillars of hydration, electrolytes, insulin, and appropriate diagnostic evaluation for etiology

- Safe and effective insulin infusion protocols are clear, concise, account for the trajectory of BG values and address hypoglycemia
- The transition from insulin infusion to a subcutaneous regimen is complex and involves a delicate balance of art and science

Polling Question

All hospital point of care blood glucose meters are approved for use in both non-critical care and critical care settings.

A) True

B) False

PRIDE Statement on the Need for a Moratorium on the CMS Plan to Cite Hospitals for Performing Point-of-Care Capillary Blood Glucose Monitoring on Critically Ill Patients

David C. Klonoff, Boris Draznin, Andjela Drincic, Kathleen Dungan, Roma Gianchandani, Silvio E. Inzucchi, James H. Nichols, Mark J. Rice, and Jane Jeffrie Seley

Diabetes Research Institute (D.C.K.), Mills-Peninsula Health Services, San Mateo, California 94401; University of Colorado Denver, School of Medicine (B.D.), Aurora, Colorado 80045; The Nebraska Medical Center Diabetes Center (A.D.), Omaha, Nebraska 68198; The Ohio State University (K.D.), Columbus, Ohio 43210; University of Michigan (R.G.), Ann Arbor, Michigan 48109; Yale University School of Medicine (S.E.I.), New Haven, Connecticut 06510; Vanderbilt University School of Medicine (J.H.N., M.J.R.), Nashville, Tennessee 37232; and New York-Presbyterian Hospital/Weill Cornell Medical College (J.J.S.), New York, New York 10065

J Clin Endocrinol Metab, October 2015, 100(10):3607-3612

Current Recommendations

for BG Monitoring in the ICU

FDA regulates product labels of laboratory tests

CMS regulates use of lab testing equipment

- Hospitals can continue to use POC BG monitors if they perform validation studies, certify staff and apply for a moderate to high complexity certificate from CLIA
- Hospitals can use FDA approved cartridge based analyzers such as epoc or i-stat with critically ill patients
- Since the Jan 2014 memo from NYSDOH, many hospitals have either performed validation studies or use NovaStat. NovaStat is *not approved* for use with capillary blood.

In Conclusion

- Current glycemic targets in the critical care setting are 140-180 mg/dL for most patients
- A safe & effective insulin drip protocol should be validated, have clear instructions and take into account special situations such as hypoglycemia, T1DM and a transition algorithm to SQ insulin
- Strict adherence to a DKA protocol with careful transition off the insulin drip once stable is key to prevent recurrence of DKA
- Hypoglycemia is a serious consequence of intravenous insulin therapy. Blood glucose monitoring and adequate treatment are essential components of both treatment and prevention of future episodes.

References

American Diabetes Association. Diabetes care in the hospital. *Diabetes Care* 2017;40(suppl 1):S120–S127.

Clement S, Braithwaite SS, Magee MF, Ahmann A, Smith EP, et al. Management of diabetes and hyperglycemia in hospitals (Technical Review). *Diabetes Care* 2004;27:553–591.

Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, Freire AX, Geehan D, Kohl B, Nasraway SA, Rigby M, Sand K, Schallom L, Taylor B, Umbierrez GE, Mazuski J, Schunemann H. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. *Crit Care Med* 2012;40:3251–3276

Moghissi ES, Korytkowski MT, DiNardo M, et al.; American Association of Clinical Endocrinologists; American Diabetes Association. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. *Diabetes Care* 2009;32:1119–1131

Umpierrez GE, Hellman R, Korytkowski M, Kosiborod M, Maynard G, Montori VM, Seley JJ, Van den Berghe G. Management of hyperglycemia in hospitalized patients in non-critical care setting: An Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab* 2012;97:16–38

Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. *Crit. Care Med* 2012 Vol 40, No 12

American Diabetes Association. Diabetes care in the hospital. *Diabetes Care* 2017;40(suppl 1):S120–S127.
Umpierrez, GE; Hellman, R; Korytkowski, M; Kosiborod, M; Maynard, G; Montori, VM, Seley, JJ; Van den Berghe, G. (2012). Management of Hyperglycemia in Hospitalized Patients in Non-Critical Care Setting: An Endocrine Society Clinical Practice Guideline. (2012). *J Clin Endocrinol Metab* 97: 16–38

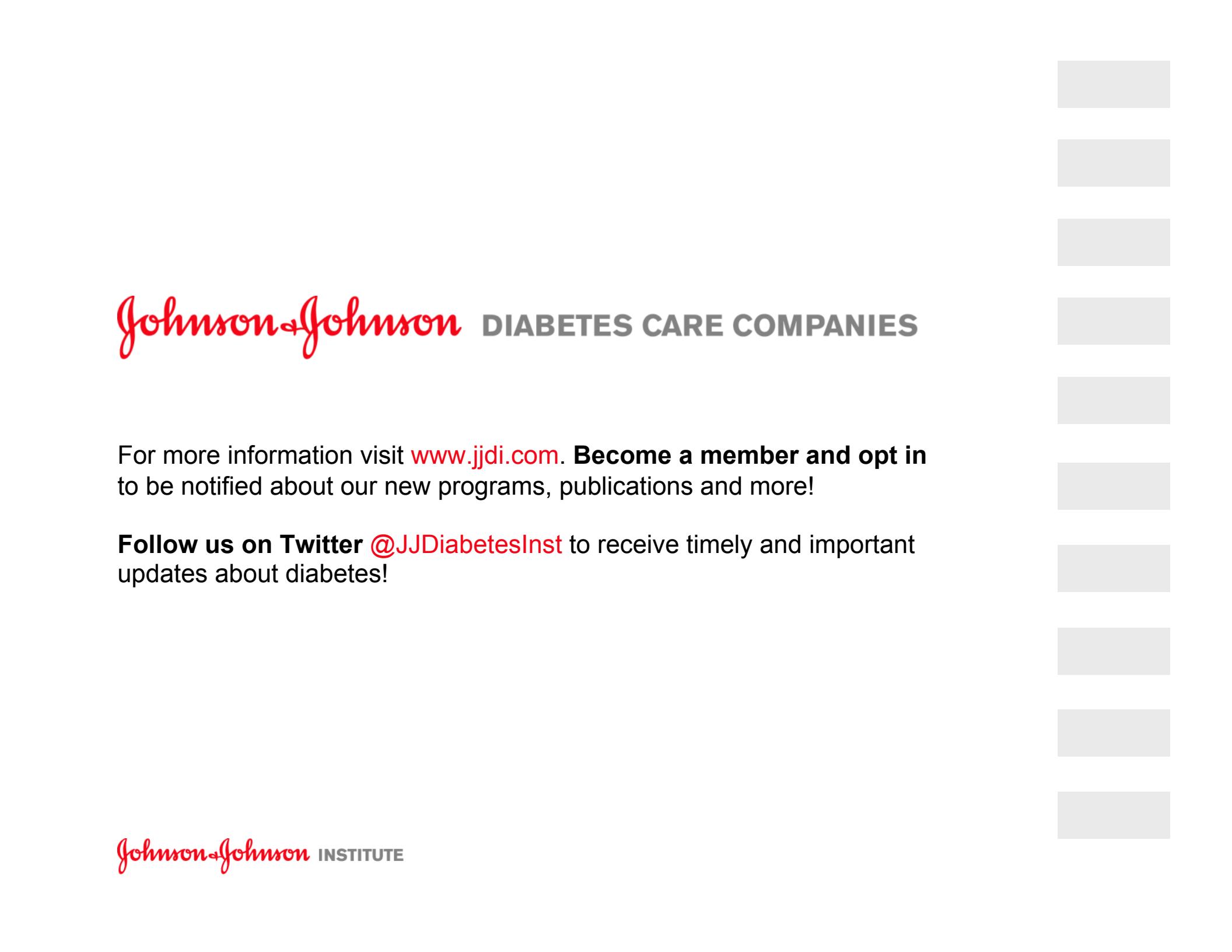
Kelly JL. Continuous insulin infusion: What, where, and how? *Diabetes Spect* 2014;27:218–223
Maynard, G., Kulasa, K., Ramos, P., Childers, D., Clay, B., Sebasky, M., ... & Choe, C. (2014). Impact of a hypoglycemia reduction bundle and a systems approach to inpatient glycemic management. *Endocrine Practice*, 21(4), 355-367.

References

Yale New Haven Hospital. (n.d.). Yale insulin drip protocol. Retrieved from <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0ahUKEwizktOpt8fPAhWCVz4KHaWMDWMQFghAMAU&url=https%3A%2F%2Fwww.hospitalmedicine.org%2FCMDDownload.aspx%3FContentKey%3D34f24a77-df56-4e61-bd1c-3834662b48fb%26ContentItemKey%3Dacf4bc7f-bb8e-49e8-90a4-a72723310674&usg=AFQjCNGmI1QFGOYGJNHi6upkuvXmjIAU0g&sig2=nCxghRgIVRLSibATqBuZFw>

Umpierrez G, Korytkowski M. Diabetic emergencies: ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. *Nature Reviews Endocrinology* 2016;12(4):222-232.

Sequist, E. R., Anderson, J., Childs, B., Cryer, P., Dagogo-Jack, S., Fish, L., ... & Vigersky, R. (2013). Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society. *Diabetes care*, 36(5), 1384-1395.


Gupta D, Kirn M, Jamkhana Z, et al. A unified Hyperglycemia and Diabetic ketoacidosis (DKA) insulin infusion protocol based on an Excel algorithm and implemented via Electronic Medical Record (EMR) in Intensive Care Units. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews* 2016.

Fusco N, Gonzales J, Yeung SY. Evaluation of the treatment of diabetic ketoacidosis in the medical intensive care unit. *American Journal of Health-System Pharmacy* 2015;72(3):177-182.

Gosmanov AR, Gosmanova EO, Dillard-Cannon E. Management of adult diabetic ketoacidosis. *Diabetes Metab Syndr Obes* 2014;7:255-264.

NewYork-Presbyterian Hospital. (n.d.). Diabetic ketoacidosis guidelines. Retrieved from <http://www.healthcare.uiowa.edu/familymedicine/fpinfo/Docs/DKA%20Protocol.pdf>

Seley, J. J., Diaz, R., & Greene, R. (2016). Blood Glucose Meters in ICUs. *AJN The American Journal of Nursing*, 116(4), 46-49

Johnson & Johnson DIABETES CARE COMPANIES

For more information visit www.jjdi.com. **Become a member and opt in** to be notified about our new programs, publications and more!

Follow us on Twitter [@JJDiabetesInst](https://twitter.com/JJDiabetesInst) to receive timely and important updates about diabetes!